Государственное предприятие «Национальная атомная энергогенерирующая компания «Энергоатом»

СТАНДАРТ ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ «НАЦИОНАЛЬНАЯ АТОМНАЯ ЭНЕРГОГЕНЕРИРУЮЩАЯ КОМПАНИЯ «ЭНЕРГОАТОМ»

Управление закупками продукции

ДЕТАЛИ И ЭЛЕМЕНТЫ ТРУБОПРОВОДОВ АТОМНЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ ИЗ КОРРОЗИОННО-СТОЙКОЙ СТАЛИ НА ДАВЛЕНИЕ ДО 2,2 МПа (22 кгс/см²). СОЕДИНЕНИЯ СВАРНЫЕ

Типы и размеры

СОУ НАЕК 146:2017

Remarked Processing Agency of the Control of the Co

ПРЕДИСЛОВИЕ

- 1 РАЗРАБОТАНО: ОП «КБ «Атомприбор» ГП «НАЭК «Энергоатом»
- 2 РАЗРАБОТЧИКИ: В. Дюков, И. Митичкина, А. Шевчук
- 3 УТВЕРЖДЕНО: приказ ГП «НАЭК «Энергоатом» от <u>23.01.2018</u> № <u>89</u>

СОГЛАСОВАНО: Госатомрегулирования Украины письмо от <u>вели вог</u> № 15-33/1-4364

- 4 ДАТА ВВОДА В ДЕЙСТВИЕ: 12.02 2018
- 5 ВВЕДЕНО ВПЕРВЫЕ
- 6 ПРОВЕРКА: 12.02.201**9**
- 7 КОД КНДК: 5.10.10
- 8 ПОДРАЗДЕЛЕНИЕ, ОТВЕТСТВЕННОЕ ЗА СОПРОВОЖДЕНИЕ НД: технический отдел ОП «КБ «Атомприбор»
- 9 МЕСТОНАХОЖДЕНИЕ ОРИГИНАЛА НД: отдел стандартизации департамента по управлению документацией и стандартизации исполнительной дирекции по качеству и управлению
- 10 ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ: с введением в действие этого стандарта не применяется в ГП «НАЭК «Энергоатом» СОУ ЯЕК СТО 79814898 110:2013 (СТО 79814898 110-2009, IDT) «Деталі та елементи трубопроводів атомних станцій із корозійностійкої сталі на тиск до 2,2 МПа (22 кгс/см²). З'єднання зварні. Типи та розміри»

ЛИСТ СОГЛАСОВАНИЯ СОУ НАЕК 146:2017

Управление закупками продукции. Детали и элементы трубопроводов атомных электрических станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Соединения сварные. Типы и размеры

Первый вице-президент – технический директор	«21» 0/11 12017	А.В. Шавлаков
Генеральный инспектор – директор по безопасности	«3 × 1/1 2017	Д.В. Билей
Исполнительный директор по качеству и управлению	«21» 11 201 4	С.А. Бриль
Начальник отдела стандартизации ДУДС ИДКУ	Albert 12017	А.А. Нелепов
Директор по ремонту		В.В. Урбанский
ОП ЗАЭС	« <u>З</u> »//_ 201 <u>Ұ</u> письмо №63-18.1/15738 от 02.08. 2017	
ОП РАЭС	письмо 031/4569 от 29.05. 2017	
ОП ЮУАЭС	письмо № 17/11568 от 10.08.2017	
ОП ХАЭС	письмо № 44-18/807-4215 от 09.06.2017	
ОП «Атомэнергомаш»	письмо № 3375/09	
	от 02.08.2017	

IN Snawbur Stant 14004en 181

СОДЕРЖАНИЕ

1	Сфера распространения	1
	Нормативные ссылки	
	Обозначения и сокращения	
	Общие требования	
	Приложение А. СТО 79814898 110:2009 «Детали и элементы трубопроводов	
	атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа	
	(22 кгс/см ²). Соединения сварные. Типы и размеры »	5
	Лист регистрации изменений	30

СТАНДАРТ ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ «НАЦИОНАЛЬНАЯ АТОМНАЯ ЭНЕРГОГЕНЕРИРУЮЩАЯ КОМПАНИЯ «ЭНЕРГОАТОМ»

Управление закупками продукции

ДЕТАЛИ И ЭЛЕМЕНТЫ ТРУБОПРОВОДОВ АТОМНЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ ИЗ КОРРОЗИОННО-СТОЙКОЙ СТАЛИ НА ДАВЛЕНИЕ ДО 2,2 МПа (22 кгс/см²). СОЕДИНЕНИЯ СВАРНЫЕ

Типы и размеры

1 СФЕРА РАСПРОСТРАНЕНИЯ

- **1.1** Этот стандарт устанавливает требования к сварным стыковым и угловым соединениям, применяемым для сборки трубопроводов (и их блоков) АЭС из коррозионно-стойких сталей аустенитного класса (далее детали).
- **1.2** Требования этого стандарта применяются подразделениями Компании, которые осуществляют:
- ремонт трубопроводов АЭС из коррозионно-стойких сталей аустенитного класса;
- проектирование трубопроводов АЭС из коррозионно-стойких сталей аустенитного класса;
- изготовление деталей и элементов из коррозионно-стойких сталей аустенитного класса для трубопроводов АЭС;
- закупку деталей и элементов трубопроводов из коррозионно-стойких сталей аустенитного класса для трубопроводов АЭС;
- эксплуатацию элементов трубопровода из коррозионно-стойкой сталей аустенитного класса для трубопроводов АЭС.
- 1.3 Требования этого стандарта являются обязательными для включения их в тендерную документацию и/или договор с подрядными организациями, которые изготавливают, поставляют детали и элементы (блоки) трубопроводов или осуществляют ремонт трубопроводов АЭС из коррозионно-стойких сталей аустенитного класса

2 НОРМАТИВНЫЕ ССЫЛКИ

Ниже приведены документы, ссылки на которые присутствуют в этом стандарте.

Если документ, указанный в этом разделе, изменен (заменен) или его действие отменено (без замены на другой), то до момента внесения изменений в СОУ НАЕК 146 необходимо пользоваться измененным (замененным) документом

либо положения СОУ НАЕК 146 применять без учета требований документа, действие которого отменено

ПНАЭ Г-7-008-89 «Правила устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок»

ПНАЭ Г-7-009-89 «Оборудование и трубопроводы атомных энергетических установок. Сварка и наплавка, основные положения»

ПНАЭ Г-7-010-89 «Оборудование и трубопроводы атомных энергетических установок. Сварные соединения и наплавки. Правила контроля»

НПАОП 0.00-1.11-98 «Правила будови і безпечної експлуатації трубопроводів пари та гарячої води»

 ${
m CHu}\Pi$ 3.05.05-84 «Технологическое оборудование и технологические трубопроводы»

ГОСТ 2246-70 Проволока стальная сварочная. Технические условия

СОУ ЯЕК СТО 79814898 122:2014 «Деталі та елементи трубопроводів атомних станцій із корозійностійкої сталі на тиск до 2,2 МПа (22 кгс/см²). Штуцери. Конструкція та розміри»

СОУ ЯЕК СТО 79814898 123:2014 «Деталі та елементи трубопроводів атомних станцій із корозійностійкої сталі на тиск до 2,2 МПа (22 кгс/см²). Штуцери для відгалужень. Конструкція та розміри»

СОУ ЯЕК СТО 79814898 124:2014 «Деталі та елементи трубопроводів атомних станцій із корозійностійкої сталі на тиск до 2,2 МПа (22 кгс/см²). Трійники зварні рівнопрохідні. Конструкція та розміри»

СОУ ЯЕК СТО 79814898 125:2014 «Деталі та елементи трубопроводів атомних станцій із корозійностійкої сталі на тиск до 2,2 МПа (22 кгс/см²). Трійники зварні перехідні. Конструкція та розміри»

СОУ ЯЕК СТО 79814898 126:2014 «Деталі та елементи трубопроводів атомних станцій із корозійностійкої сталі на тиск до 2,2 МПа (22 кгс/см²). Трійники зварні рівнопрохідні з накладкою. Конструкція та розміри»

СОУ ЯЕК СТО 79814898 127:2014 «Деталі та елементи трубопроводів атомних станцій із корозійностійкої сталі на тиск до 2,2 МПа (22 кгс/см²). Трійники зварні перехідні з накладкою. Конструкція та розміри»

OCT 5.9370-81 «Электроды покрытые металлические специального назначения для ручной дуговой сварки стали»

OCT B5.9374-81 «Электроды покрытые металлические специального назначения для ручной дуговой сварки стали аустенитного класса»

OCT 108.948.01-86 «Электроды покрытые металлические для ручной дуговой сварки оборудования атомных электростанций. Марки. Технические требования»

ОСТ 34-42-658-84 «Детали и сборочные единицы трубопроводов АЭС $P_{\text{pa6}} \leq \text{M}\Pi a$ (22 кгс/см²) Т \leq 350 °C. Трубы и прокат. Сортамент»

OCT 34-42-659-84 «Детали и сборочные единицы трубопроводов АЭС $P_{pa6} \leq M\Pi a$ (22 кгс/см²) $T \leq 350$ °C. Соединения сварные стыковые. Типы и размеры»

ТУ 14-1-2143-77 «Проволока стальная сварочная марки CB-03X15H35Г7М6Б (ЭП 855)»

ТУ 5.965-11187-81 «Электроды марок ЭА 855/51, ЭА 582/23»

OTT-87 «Арматура для оборудования и трубопроводов АЭС. Общие технические требования»

СОУ НАЕК 144:2017 «Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см 2). Технические требования»

СОУ НАЕК 145:2017 «Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Трубы и прокат. Сортамент»

СОУ НАЕК 147:2017 «Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см 2). Колена крутоизогнутые. Конструкция и размеры»

СОУ НАЕК 157:2017 «Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Тройники переходные с усиленным штуцером. Конструкция и размеры»

3 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

АЭС – атомная электрическая станция

ОП – обособленное подразделение ГП «НАЭК «Энергоатом»

ГП «НАЭК» – государственное предприятие «Национальная атомная «Энергоатом» энергогенерирующая компания «Энергоатом»

или Компания

НД – нормативный документ

4 ОБЩИЕ ТРЕБОВАНИЯ

- **4.1** Общие требования к типам и размерам сварных стыковых и угловых соединений, применяемых для сборки трубопроводов (и их блоков) АЭС из коррозионно-стойких сталей аустенитного класса приведены в приложении А.
- **4.2** Для этого стандарта ограничить сферу распространения, указанную в разделе 1 «Область распространения» СТО 79814898 110-2009 (приложение A), а именно не применять ПБ-03-585-03 (не принят в Украине как национальный НД).
- **4.3** Сварка труб и фасонных деталей из сталей различных структурных классов должна соответствовать разделу 6 СТО 79814898 110-2009 (приложение A).
- **4.4** В условном обозначении переходника указывается: наименование детали, исполнение по СТО 79814898 110-2009 (приложение А), обозначение этого стандарта и СТО 79814898 110-2009.

Примеры

1 Переходник для соединения трубопроводов DN = 300 группы С по ПНАЭ Γ -7-008 PN = 25из сталей марки 20 n 08X18H10T с контролем сварного шва для III категории по ПНАЭ Γ -7-010 длиной 350 мм:

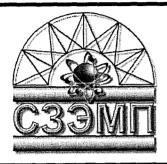
Переходник С $300 \times 350 - 20 - 08X18H10T - IIIB - PN$ 25 COУ HAEK 146:2017 (СТО 79814898 110-2009)

- 2 То же, для трубопроводов группы B, DN = 200 из патрубков 219×7 и 220×7 Переходник B 200×350 (219×7-220×7) 20 08X18H10T IIIв PN 25 СОУ НАЕК 146:2017 (СТО 79814898 110-2009)
- 3 То же, с контролем сварного шва для II категории по ПНАЭ Γ -7-010: Переходник В 200×350(219×7-220×7) 20 08Х18Н10Т IIв PN 25 СОУ НАЕК 146:2017 (СТО 79814898 110-2009)
- **4.5** Для этого стандарта в приложении А вместо НД, не действующих в Украине, необходимо использовать НД, приведенные во второй колонке таблицы 1.

Таблица 1

CTO 79814898 104-2009	OCT 34-42-658-84
CTO 79814898 106-2009	OCT 34-42-659-84
CTO 79814898 108-2009	СОУ НАЕК 144:2017
CTO 79814898 109-2009	СОУ НАЕК 145:2017
CTO 79814898 111-2009	СОУ НАЕК 147:2017
CTO 79814898 121-2009	СОУ НАЕК 157:2017
CTO 79814898 122-2009	СОУ ЯЕК СТО 79814898 122:2014
CTO 79814898 123-2009	СОУ ЯЕК СТО 79814898 123:2014
CTO 79814898 124-2009	СОУ ЯЕК СТО 79814898 124:2014
CTO 79814898 125-2009	СОУ ЯЕК СТО 79814898 125:2014
CTO 79814898 126-2009	СОУ ЯЕК СТО 79814898 126:2014
CTO 79814898 127-2009	СОУ ЯЕК СТО 79814898 127:2014
OCT 5P.9370-81	OCT 5.9370-81
OCT B5P.9374-81	OCT B5.9374-81
НП-045-03	НПАОП 0.00-1.11-98
НП-068-05	OTT-87

4.6 В приложении А:


- а) в таблице 4, графа «Выполненный шов» «g,мм» «1-23 (С-23)» заменить значение «1,5 $^{+1,0}_{-0.5}$ » на «1,5 $^{+1,5}_{-0.5}$ »;
- б) в таблице 4, графа «Выполненный шов» «е, мм» «1-22 (С-22)» заменить значение:
 - $\ll 9 \pm 2$ » на $\ll 9 \pm 3$ »; $\ll 10 \pm 2$ » на $\ll 10 \pm 3$ ».

приложение а

(обязательное)

СТО 79814898 110-2009 «ДЕТАЛИ И ЭЛЕМЕНТЫ ТРУБОПРОВОДОВ АТОМНЫХ СТАНЦИЙ ИЗ КОРРОЗИОННО-СТОЙКОЙ СТАЛИ НА ДАВЛЕНИЕ ДО2,2 МПа (22 кгс/см²). СОЕДИНЕНИЯ СВАРНЫЕ. ТИПЫ И РАЗМЕРЫ»

ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «ИНСТИТУТ «СЕВЗАПЭНЕРГОМОНТАЖПРОЕКТ»

СТАНДАРТ ОРГАНИЗАЦИИ CTO 79814898 110-2009

Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²)

СОЕДИНЕНИЯ СВАРНЫЕ

Типы и размеры

Издание официальное.

ЗАО «СЗЭМП»

УЧТЁН

(Подпись)

(Фиб)

Санкт-Петербург 2 0 0 9

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения стандартов организаций – ГОСТ Р 1.4-2004 «Стандартизация в Российской Федерации. Стандарты организаций. Общие положения»

Сведения о стандарте

- 1 РАЗРАБОТАН И ВНЕСЕН отделом разработки оборудования и нормативно-технической документации ЗАО «Института «Севзапэнергомонтажпроект»
- 2 СОГЛАСОВАН с Проектно-конструкторским филиалом ОАО «Концерн Росэнергоатом», ОАО Атомэнергопроект», ОАО «СПбАЭП», ОАО «НИАЭП», ЗАО «Энергомаш (г. Белгород)»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом ЗАО «Институт «Севзапэнергомонтаж-проект» от 04.12. 2009 г. № 310

4 B3AMEH CTO 79814898 102-2008

Информация об изменениях к настоящему стандарту предоставляется в ежегодно обновляемом перечне действующей нормативно-технической документации ЗАО «Институт «Севзапэнергомонтажпроект» на сайте www.szemp.ru

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения ОАО «Концерн Росэнергоатом» и организации-разработчика

Введение

Настоящий стандарт создан с целью систематизации требований нормативной базы Федеральной службы по экологическому, технологическому и атомному надзору к объектам стандартизации, и может применяться другими организациями в порядке и на условиях, оговоренных ГОСТ Р 1.4–2004 (пункты 4.17 и 4.18).

СТАНДАРТ ОРГАНИЗАЦИИ

Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²)

СОЕДИНЕНИЯ СВАРНЫЕ

Типы и размеры

Дата введения—2010—02—01

1 Область применения

Настоящий стандарт распространяется на сварные стыковые и угловые соединения, применяемые для сборки трубопроводов (и их блоков) атомных станций (АС) из коррозионно-стойких сталей аустенитного класса, отнесённых правилами устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок — ПНАЭ Г-7-008 [1], утвержденными Госатомэнергонадзором СССР, к группам В и С и присоединения указанных трубопроводов к оборудованию, трубопроводной арматуре и трубопроводам из сталей перлитного класса.

Стандарт устанавливает основные типы сварных соединений, способы сварки, сварочные материалы, форму и конструкционные элементы подготовленных к сварке кромок изделий и размеры выполненных швов.

Стандарт соответствует требованиям ПНАЭ Г-7-008 [1], основным положениям по сварке и наплавке оборудования и трубопроводов АС – ПНАЭ Г-7-009 [2] и правилам контроля сварных соединений и наплавок – ПНАЭ Г-7-010 [3], утвержденным Госатомэнергонадзором СССР.

Настоящий стандарт может быть также применен при проектировании и изготовлении трубопроводов АС по федеральным нормам и правилам НП-045 [4], утвержденным Госатомнадзором России, строительным нормам и правилам СНиП 3.05.05 [5], утвержденным Госстроем СССР и ПБ 03-585 [6], утвержденным Госгортехнадзором России

2 Нормативные ссылки

В настоящем стандарте использована ссылка на следующий стандарт: ГОСТ 2246-70 Проволока стальная сварочная. Технические условия

CTO 79814898 110-2009

П р и м е ч а н и е – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому инфор-мационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 В настоящем стандарте применены термины, определения и обозначения по СТО 79814898 108 [7].

4 Общие положения

- 4.1 Для изготовления трубопроводов групп В и С АС из коррозионно-стойких сталей аустенитного класса следует применять трубы по СТО 79814898 109 [8] и фасонные детали, перечень которых приведён в СТО 79814898 108 [7].
- 4.2 Подготовка труб и фасонных деталей под сварку, процессы сборки и сварки должны выполняться по производственно-технологической документации (ПТД), а контроль качества сварных соединений по производственно-контрольной документации (ПКД), разрабатываемым предприятием-изготовителем (монтажной организацией) в соответствии с требованиями настоящего стандарта, ПНАЭ Г-7-009 [2], ПНАЭ Г-7-010 [3], СТО 79814898 108 [7] и технических условий.
- 4.3 Регламентируемые ПТД и ПКД операции должны выполняться квалифицированным и аттестованным на их выполнение персоналом.
 - 4.4 Допускается объединение ПКД с ПТД.

5 Сварка труб и фасонных деталей из сталей аустенитного класса

5.1 Стыковые соединения

5.1.1 Сварку труб и фасонных деталей трубопроводов рекомендуется выполнять ручной дуговой, аргонодуговой и комбинированной сваркой.

Примечани е – Комбинированная сварка: корень шва выполняется аргонодуговой сваркой, а заполнение разделки осуществляется ручной дуговой сваркой покрытыми электродами.

5.1.2 Типы сварных соединений для сварки труб и фасонных деталей, способы сварки и размеры сварных швов должны соответствовать ПНАЭ Г-7-009 [2] (пункт 12.3).

Применяемые сварочные материалы, в зависимости от способа сварки, выбираются по ПНАЭ Г-7-009 [2] (таблица 3).

- 5.1.3 Сварное соединение 1-16 (С-17) на остающемся подкладном кольце, как правило, не допускается. В исключительных случаях, оговорённых ПНАЭ Г-7-009 [2] (пункт 5.3.21), допускается применение указанного соединения в соответствии с требованиями ПНАЭ Г-7-009 [2] (пункты 5.3.22, 12.10 и 12.11).
- 5.1.4 Для сварки труб и фасонных деталей с трубопроводной арматурой следует применять типы сварных соединений согласно общим техническим требованиям к арматуре атомных станций НП-068 [9] (пункт 2.3.7), утвержденным Ростехнадзором.
- 5.1.5 На чертежах трубопроводов и их блоков необходимо указывать тип сварного соединения в соответствии с обозначением, принятом в ПНАЭ Г-7-009 [2].
 - 5.1.6 Конструкционные элементы подготовленных к сварке кромок:
- труб и фасонных деталей, поставляемых в составе трубопроводных блоков, в замыкающих блок торцевых сечениях;
- фасонных деталей трубопроводов, поставляемых отдельно, за исключением случаев, когда иное не предусмотрено проектом трубопровода, должны быть выполнены в соответствии с рисунками 1–5 таблицы 1 и данными таблицы 4.

П р и м е ч а н и е – Для фасонных деталей трубопроводов размеры подготовки кромок выбираются по таблице 4 в зависимости от размеров присоединяемой трубы.

Таблица 1

Условное обозначение	Размеры с труб или						
сварного соединения*	Наружный диаметр, мм	Толщина стенки, мм	Подготовка кромок под сварку				
1-22 (C-22)	10–38 (кроме 25)	2–3	45°±2°				

Продолжение таблицы 1

Условное обозначение	Размеры с труб или	деталей	Подготовка кромок под сварку
сварного соединения*	Наружный диаметр, мм	Толщина стенки, мм	гюдготовка кромок под оварку
1-23 (C-23)	25, 57	3–6	35°±2°
1-25-1 (C-42)	76–325	4–40	$\sqrt{Ra12.5}(\sqrt{)}$ $20^{\circ}\pm 2^{\circ}$ $3^{+0.3}$ $R1^{+0.5}$ $\sqrt{5}$ $R1.5$

Продолжение таблицы 1

Условное обозначение	Размеры с труб или	тыкуемых деталей	_			
сварного соединения	Наружный диаметр, мм	Толщина стенки, мм	Подготовка кромок под сварку			
1-24-1 (C-24-1)	377–630	4–16	35°±2°			
1-16 (C-17)	720–1220	5–30	30°±2° / Ra12,5 R1,5 / S / S / S / S / S / S / S / S / S /			
* По ПНАЭ Г-7 ** См. п.7.1.	'-009 [2].					

- 5.1.6.1 Радиус 1,5 мм обеспечивается инструментом.
- 5.1.6.2 Расточка кромок крутоизогнутых колен по СТО 79814898 111 [10] по внутреннему диаметру выполняется без прямого участка. Допускается увеличение угла расточки (выхода резца – 12°) до 15°.
- 5.1.7 Сварные соединения указанных в таблице 1 типов, должны быть выполнены в соответствии с рисунками 6–13 таблицы 2 и данными таблицы 4.
 - 5.1.7.1 Рекомендуемые способы сварки и сварочные материалы приведены в таблице 3.
- 5.1.7.2 Сведения о нормативно-технической документации на сварочные материалы приведены в приложении А.

Таблица 2

Условное обозначение сварного соединения*	Сборка под сварку	Выполненный шов
1-22 (C-22) 1-23 (C-23)	Duoyuox 6	Puguay 7
	Рисунок 6	Рисунок 7
1-25-1 (C-42)	0,3max	e
	Рисунок 8	Рисунок 9

Окончание таблицы 2

Условное обозначение сварного соединения*	Сборка под сварку	Выполненный шов
1-24-1 (C-24-1)	1±0,5	e - 0
	Рисунок 10	Рисунок 11
1-16 (C-17)	2+1	9±3
	Рисунок 12	Рисунок 13
*По ПН АЭ Г-7-0	09 [2].	

Таблица 3

Условное обозначение сварного соединения*	Способ сварки	Сварочные материалы**					
1-22 (C-22) 1-23 (C-23)	Аргонодуговая	Сварочная проволока Св-04X19H11M3					
1-25-1 (C-42)	Аргонодуговая,	Сварочная проволока Св-04Х19Н11М3					
1-24-1 (C-24-1)	комбинированная	Электроды марок ЭА-400/10У, ЭА-400/10Т					
1-16 (C-17)	Аргонодуговая, ручная дуговая, комбинированная	Сварочная проволока Св-04Х19Н11М3 Электроды марок ЭА-400/10У, ЭА-400/10Т					
* По ПН АЭ Г-7-0	009 [2].						

Таблица 4 – Подготовка кромок труб под сварку

CTO 79814898 110-2009

		Кромка				Выполненный шов																
Услов- ный проход <i>DN</i>	Размеры стыкуемых труб <i>Dнх</i> S,			<i>SK</i> , MM /, MM			g, mm				е, мм											
DN	ММ	Номин.	Пред. откл.	Не менее		1-22 (C-22)	1-23 (C-23)	1-25-1 (C-42)		1-22 (C-22)	1-23 (C-23)	1-25-1 (C-42)										
6	10 × 2,0	6,5		1,5		1,5 ^{+1,0} _{-0,5}				7±2			0,001									
10	14 × 2,0	10,5	+0,18	1,5		-0,5	_			712	_		0,002									
15	18 × 2,5	13,5		2,0		2,0 ^{+1,5} -1,0				9±2			0,004									
20	25 × 3,0	19,0	+0,30	2,5	10 ^{+0,5}	10 ^{+0,5}	1,5 ^{+1,0} -0,5	-	0,5+1,0	_	7±2		0,004									
25	32 × 2,5	28,0	+0,21	1,8	2,0 ^{+1,5}	0+1,5			9±2			0,007										
32	38 × 3,0	33,0	+0,25	2,3		2,0-1,0	_			10±2			0.011									
50	57 × 3,0	52,0		2,0			1,5 ^{+1,0} _{-0,5}				7±2		0,011									
65	76 × 4,5	68,0	+0,30									10,5±3	0,028									
80	89 × 5,0	80,0										44.012	0,040									
100	108 × 5,0	99,0	+0,35	3,5	15 ^{+0,7}			1,0 ^{+1,5}				11,0±3	0,049									
125	133 × 6,0	124,0	+0,40						!												12.012	0,082
150	159 × 6,0	150,0	+0,40			_	_		_			12,0±3	0,099									
200	219 × 11,0	200,0	+0,46	7,5	25 ^{+1,0}			1,5 ^{+1,5}				15,0±4	0,389									
200	220 × 7,0	209,0	10,40	4,5	15 ^{+0,7}				1,0 ^{+1,5} -0,5				12,5±4	0,176								
250	273 × 11,0	255,0	+0,52	6,5	25 ^{+1,0}			1,5 ^{+1,5}				15,0±4	0,491									
300	325 × 12,0	305,0	10,02	7,0				', [~] −1,0				16,0±4	0,676									

CTO 79814898 110-2009

Окончание таблицы 4

		Кромка				Выполненный шов							
Услов- ный проход <i>DN</i>	Размеры стыкуемых труб <i>Dнх</i> S,	Диал калиб (раст <i>Dк</i> ,	ровки очки)	Sκ, mm	/, MM	<i>g</i> , 1	g, mm		е, мм		Масса*, кг		
DIV	MM	Номин.	Пред. откл.	Не менее		1-24-1 (C-24-1)	1-16 (C-17)		1-24-1 (C-24-1)	1-16 (C-17)			
350	377 × 6	367	+0,57	4,0	4,0 15 ^{+0,7}				14±3		0,36		
400	426 × 8	412	+0,63	5,5		1,5 ^{+1,5}			16±4	-	0,63		
500	530 × 8	516		5,8	20 ^{+1,0}		_	_			0,78		
600	630 × 8	616	+0,70	6,2							0,93		
800	630 × 12	608		9,5	25 ^{+1,0}				22±5		1,86		
700	720 × 10	703	+0,80	7,2							1,92		
800	820 × 10	803	+0,90	8,2				См. табл.2	_	19±4	2,19		
900	920 × 10	903	+0,50	7,0	20+1,0		2±1,5				2,46		
1000	1020 × 10	1003	+1,00	0,1							2,73		
1200	1220 × 10	1203	1 +1,00	8,0							3,27		

^{*} Теоретическая масса наплавленного металла (приведена для справок).

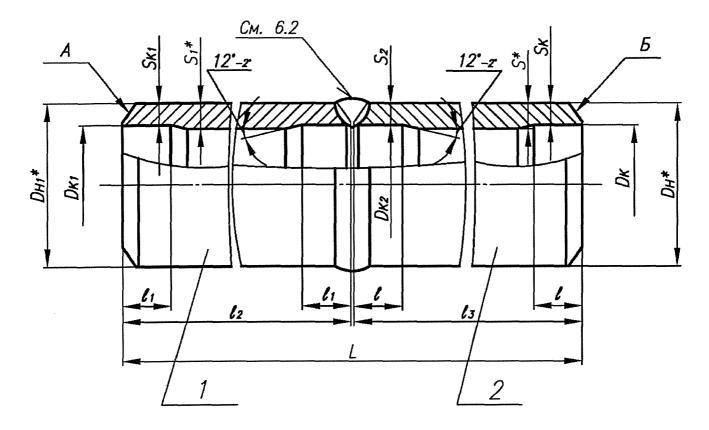
Примечание – Подготовка кромок фасонных деталей осуществляется по размерам присоединяемой трубы.

5.2 Угловые соединения

- 5.2.1 Приварка штуцеров по СТО 79814898 122 [11], а также бобышек и патрубков *DN*≤65, изготовляемых по рабочим чертежам, должна производиться с удалением корня шва по типам 2-03 (У-3) и 2-04 (У-4) ПНАЭ Г-7-009 [2].
- 5.2.2 Конструкция и размеры угловых сварных соединений приварки штуцеров к трубам и корпусам тройников должны соответствовать СТО 79814898 121 [12], СТО 79814898 123—СТО 79814898 127 [13]–[17].
- 5.2.3 Сварку угловых сварных соединений равнопроходных тройников при наружном диаметре штуцера 89 мм и более и переходных тройников при наружном диаметре штуцера 89 мм и более при отношении наружных диаметров штуцера и корпуса более 0,7, рекомендуется выполнять с подваркой корня шва с внутренней стороны. Подварочный шов шириной от 6 до 8 мм выполнять ручной аргонодуговой сваркой с присадочной проволокой после частичного или полного удаления корня шва.

Подварку штуцеров *DN* ≤ 300 допускается не проводить в случаях обеспечения сквозного проплавления или выполнения шва на подкладном кольце.

6 Сварка труб и фасонных деталей из сталей различных структурных классов


6.1 Общие положения

- 6.1.1 Соединения труб и фасонных деталей из сталей аустенитного класса с трубами и фасонными деталями из сталей перлитного класса следует выполнять в соответствии с требованиями ПНАЭ Г-7-009 [2] (подраздел 6.3).
 - 6.1.2 Соединения следует выполнять стыковыми, преимущественно в заводских условиях.

 При этом соединения рекомендуется выполнять в составе изготавливаемого трубного блока.
- 6.1.3 Соединения трубных блоков из сталей различных классов рекомендуется производить путем изготовления переходника в заводских условиях. Применение переходников должно предусматриваться конструкторской документацией.

Переходник представляет собой сборочную единицу, сваренную из двух отрезков труб (патрубков), каждый из которых по марке стали, соответствует соединяемым блокам:

- патрубок из стали перлитного класса изготавливается из труб по СТО 79814898 104 [18];
- патрубок из стали аустенитного класса изготавливается из труб по СТО 79814898 109 [8].
- 6.1.4 Конструкция и размеры переходника должны соответствовать указанным на рисунке 14 и в таблице 5.

Патрубки:

- поз. 1 из стали перлитного класса;
- поз. 2 из стали аустенитного класса.

Рисунок 14

- 6.1.4.1 Размеры $D\kappa_1$; I_1 ; $S\kappa_1$ и тип разделки кромки A по СТО 79814898 106 [19].
- 6.1.4.2 Размеры DH; DH_1 ; DK_2 ; L; S; S_1 ; S_2 ; I_2 u I_3 по таблице 5, тип разделки кромки E по 5.1, размеры DK; I; SK по таблице 4.
- 6.1.4.3~Для труб разной номинальной толщины диаметр $D\kappa_2$ рекомендуется выполнять равным внутреннему диаметру патрубка меньшей толщины.
 - 6.1.4.4 Методы и объём контроля сварного соединения по СТО 79814898 108 [7].
- 6.1.4.5 На переходнике маркировать: группу трубопровода по ПНАЭ Г-7-008 [1], условный проход (для *DN* 200 размеры патрубков), марки сталей патрубков, категорию сварного соединения по ПНАЭ Г-7-010 [3] и обозначения: условного давления и настоящего стандарта.

^{*}Размеры для справок.

Таблица 5

В миллиметрах

Услов- ный	Условное	50	50	$D\kappa_2$		S_2		<i>l</i> ₃	L
проход <i>DN</i>	давление	Dh×S	DH₁×S₁	Номин.	Пред. откл.	Не менее			min
10		14 × 2,0	14 × 2,0	10,5	+0,18				
15		18 × 2,5	18 × 2,0	14,5	10,10				
20		25 × 3,0	25 × 2,0	21,5	+0,21	1,5	50	50	101
25		32 × 2,5	32 × 2,0	28,5	10,21				
32		38 × 3,0	38 × 2,0	34,5	+0,25				
50		57 × 3,0	57 × 3,0	52,0	+0,30	1,8			
65		76 × 4,5	76 × 3,0	71,0	+0,30	1,0			
80		89 × 5,0	89 × 3,5	84,0	+0,35	2,2			
100	PN 25	108 × 5,0	108 × 4,0	102,0	1 +0,33	2,4			201
125		133 × 6,0	133 × 4,0	126,0	+0,40	2,6			
150		159 × 6,0	159 × 5,0	151,0	1 +0,40	3,0			
200		219 × 11,0 219 × 7,0	208,0	+0,46	4,0				
200		220 × 7,0	219 × 7,0	200,0	10,40	7,0		100	
250		273 × 11,0	273 × 8,0	259,0	+0,52	+0.52			
300		325 × 12,0	325 × 8,0	311,0	10,02	4,5	100		
350		377 × 6,0	377 × 9,0	367,0	+0,57		100	100	
400		426 × 8,0	426 × 9,0	412,0	+0,63				
500	PN 16	530 × 8,0	530 × 8,0	516,0		5,5			202
600	FIVIO	630 × 8,0	630 × 8,0	616,0	+0,70				
	PN 25	630 × 12,0	630 × 12,0	608,0		9,5			
700		720 × 10,0	720 × 8,0	706,0	+0,80	5,5			
800	PN 16	820 × 10,0	820 × 9,0	804,0	+0,90	6,5			
900		920 × 10,0	920 × 10,0	903,0	. 0,30	7,0	1 1		
1000		1020 × 10,0	1020 × 10,0	1003,0	+1,00				
1200	PN 10	1220 × 10,0	1220 × 11,0	1203,0	1,00	8,0			

6.1.4.6 Условное обозначение переходника:

Примеры

1 Переходник для соединения трубопроводов DN 300 группы С по ПНАЭ Г-7-008 [1] PN 25 из сталей марок 20 и 08X18H10T с контролем сварного шва для III категории по ПНАЭ Г-7-010 [3] длиной 350 мм

Переходник С 300×350 - 20 - 08X18H10T - IIIв - PN 25 CTO 79814898 110-2009

- 2 То же, для трубопроводов группы B, DN 200 из патрубков 219×7 и 220×7 Переходник B 200×350 (219×7–220×7) – 20 – 08X18H10T– IIIв – PN 25 CTO 79814898 110–2009
- 3 То же, с контролем сварного шва для II категории по ПНАЭ Г-7-010 [3] Переходник В 200×350 (219×7-220×7) – 20 – 08Х18Н10Т- IIв – PN 25 СТО 79814898 110–2009

6.2 Типы сварных соединений

- 6.2.1 Типы сварных соединений для сварки труб и фасонных деталей из сталей различных структурных классов, способы сварки и размеры сварных швов должны соответствовать ПНАЭ Г-7-009 [2] (пункт 12.4).
- 6.2.2 Соединения труб диаметром от 14 до 57 мм рекомендуется сваривать в среде аргона неплавящимся электродом с присадочной проволокой марок указанных в таблице 6. Корень шва при этом следует выполнять также с подачей присадочной проволоки.

Соединения труб диаметром от 76 до 1220 мм, помимо этого, допускается выполнять комбинированной сваркой.

Соединения типа 1-25-1 (С-42) допускается выполнять с расплавляемой вставкой, изготовляемой согласно ПНАЭ Г-7-009 [2] (пункт12.10) из сварочной проволоки марок, указанных в таблице 6.

6.2.3 При комбинированной сварке соединений из сталей различных структурных классов выбор марки сварочных электродов для заполнения разделки осуществляется в зависимости от марки проволоки согласно таблице 6.

Таблица 6

Марка сварочной проволоки* (расплавляемой вставки)	Марка сварочных электродов*			
Св-10X16H25AM6	ЭА-395/9, ЦТ-10			
Св-07Х25Н13	3ИО-8, ЦЛ-25/1, ЦЛ-25/2			
Св-03Х15Н35Г7М6Б	ЭA-855/51			
* См. п.6.2.3.2.				

- 6.2.3.1 Применение указанных электродов в сочетании с другими проволоками не допускается.
- 6.2.3.2 Сведения о нормативно-технической документации на сварочные материалы приведены в приложении А.
- 6.2.4 Размеры сварного соединения 1-25-1 (C-42) с расплавляемой вставкой должны соответствовать ПНАЭ Г-7-009 [2].

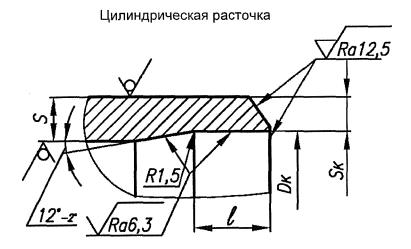
7 Допуски

7.1 Смещение кромок при сварке

- 7.1.1 Смещение (несовпадение) внутренних кромок в стыковых сварных соединениях с односторонней разделкой может составлять до 12 % номинальной толщины стенки свариваемых элементов, но не более 0,5 мм.
- 7.1.2 В собранных под дуговую сварку стыковых сварных соединениях деталей одинаковой номинальной толщины, не подлежащих механической обработке после сварки в зоне швов, смещение кромок (несовпадение поверхностей соединяемых деталей) со стороны (сторон) выполнения сварки не должно превышать норм ПНАЭ Г-7-010 [3] (подпункт 11.2.6.4).
- 7.1.3 Для обеспечения требований п.7.1.1 необходимо выполнять цилиндрическую калибровку расточку или холодную раздачу (обжатие) кромок труб и фасонных деталей по внутреннему диаметру, согласно рисунку 15. Допускается сочетание раздачи (обжатия) с последующей расточкой согласно рисунку 16.

При холодной раздаче (обжатии) изменение фактического наружного диаметра кромок труб (деталей) должно быть не более 3 % его номинального значения.

Фактическая толщина стенки после калибровки должна быть не менее значений $S\kappa$, приведенных в таблице 4.


Раздаче (обжатию) подлежат кромки, фактические размеры или овальность которых при выполнении калибровки расточкой, не позволяют одновременно выдержать размеры *Dк* и *Sк* (см. таблицу 4).

Допустимость применения и условия горячей раздачи (обжатия) кромок труб или деталей устанавливается ПТД.

- 7.1.3.1 Допускается выполнять калибровку одной из стыкуемых труб (деталей) по внутреннему диаметру другой трубы (детали), не выдерживая *Dк*, при условии обеспечения толщины стенки после калибровки не менее значения *Sк*, указанного в таблице 4.
- 7.1.3.2 Допускается изменять проектные (согласно таблице 4) диаметры расточки труб и фасонных деталей для внутренних стыков изготовляемого блока при условии обеспечения толщины стенки после расточки не менее значения *Sк*, указанного в таблице 4.

При этом диаметр расточки должен быть одинаковым для данного типоразмера труб (деталей) в пределах одной системы трубопроводов (одного заказа).

7.1.3.3 Калибровку кромок фасонных деталей номинальной толщиной до 2,5 мм (при её необходимости) следует выполнять на монтаже. По согласованию с монтажной организацией допускается поставка фасонных деталей с некалиброванными кромками номинальной толщиной свыше 2,5 мм.

Раздача

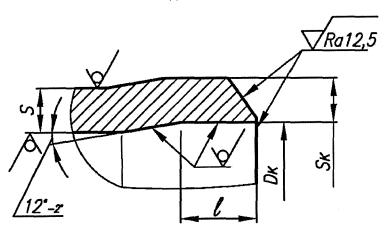


Рисунок 15

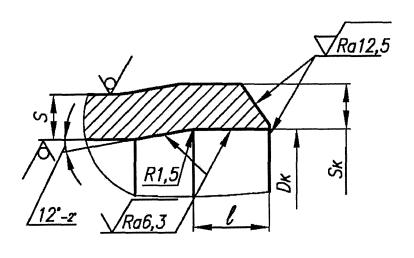


Рисунок 16

7.1.4 Переход от усиления шва к основному металлу должен быть плавным.

7.1.5 При сварке труб с элементами, имеющими больший наружный диаметр, должен быть обеспечен плавный переход от одного элемента к другому путем постепенного утонения кромки более толстого элемента согласно рисунку 17.

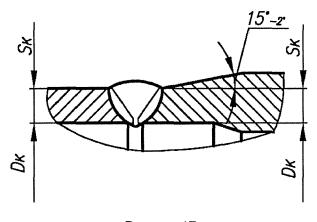


Рисунок 17

Если разница в номинальной толщине соединяемых элементов составляет не более 30 % толщины тонкого элемента и при этом не превышает 5 мм, то допускается не выполнять указанное утонение, а плавный переход обеспечить за счёт наклона поверхности шва.

7.2 Предельные отклонения

- 7.2.1 Предельные отклонения размеров стыковых сварных соединений должны соответствовать величинам, приведённым в таблице 4.
- 7.2.2 Предельные отклонения размеров угловых сварных соединений приварки штуцера устанавливаются в рабочей документации предприятия-изготовителя, исходя из выбранной технологии сварки.

Отклонения должны быть только плюсовыми.

7.2.3 Значения вогнутости корня шва с внутренней стороны при сварке труб (деталей) без подкладных колец не должны превышать значений, указанных в таблицах 7 и 8.

Таблица 7 - При сварке в поворотном положении

В миллиметрах

Номинальная толщина стенки (S) сваренных труб (деталей)	Допустимая максимальная высота (глубина) вогнутости корня шва			
2,0–2,5	0,4			
3,0	0,6			
4,5– 6,0	0,8			
7,0–8,0	1,0			
10,0–12,0	1,2			
Свыше 12,0	1,5			

Таблица 8 - При сварке в неповоротном положении

В миллиметрах

Номинальная толщина стенки (S) сваренных труб (деталей)	Допустимая максимальная высота (глубина) вогнутости корня шва				
2,0–2,5	0,6				
3,0	0,8				
4,5-6,0	1,0				
7,0–8,0	1,2				
Свыше 8,0	(0,15·S)*				
* Но не более 1,6 мм при условии увеличения	усиления шва на 1 мм от номинального размера.				

Для сварных соединений IIIв и IIIс подкатегорий по ПНАЭ Г-7-010 [3] допускается увеличение значений высоты (глубины) вогнутости в 1,5 раза.

8 Заключение

- 8.1 В обоснованных случаях допускаются отступления от требований разделов 5–7, если они согласованы разработчиком настоящего стандарта.
 - 8.2 Остальные требования по СТО 79814898 108 [7].

Библиография

[1] ПНАЭ Г-7-008-89	Правила устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок
[2] ПНАЭ Г-7-009-89	Оборудование и трубопроводы атомных энергетических установок. Сварка и наплавка. Основные положения
[3] ПНАЭ Г-7-010-89	Оборудование и трубопроводы атомных энергетических установок. Сварные соединения и наплавки. Правила контроля
[4] HΠ-045-03	Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды для объектов использования атомной энергии"
[5] СНиП 3.05.05-84	Строительные нормы и правила. Технологическое оборудование и технологические трубопроводы
[6] ПБ 03-585-03	Правила устройства и безопасной эксплуатации технологических трубопроводов
[7] CTO 79814898 108–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Технические требования
[8] CTO 79814898 109–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Трубы и прокат. Сортамент
[9] НП-068-05	Трубопроводная арматура для атомных станций. Общие технические требования
[10] CTO 79814898 111–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Колена крутоизогнутые. Конструкция и размеры
[11] CTO 79814898 122–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Штуцеры. Конструкция и размеры
[12] CTO 79814898 121–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Тройники переходные с усиленным штуцером. Конструкция и размеры
[13] CTO 79814898 123–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Штуцеры для ответвлений. Конструкция и размеры

CTO 79814898 110-2009

[14] CTO 79814898 124–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Тройники сварные равнопроходные. Конструкция и размеры
[15] CTO 79814898 125–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Тройники сварные переходные. Конструкция и размеры
[16] CTO 79814898 126–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Тройники сварные равнопроходные с накладкой. Конструкция и размеры
[17] CTO 79814898 127–2009	Детали и элементы трубопроводов атомных станций из коррозионно-стойкой стали на давление до 2,2 МПа (22 кгс/см²). Тройники сварные переходные с накладкой. Конструкция и размеры
[18] CTO 79814898 104–2008	Детали и элементы трубопроводов атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²). Трубы и прокат. Сортамент
[19] CTO 79814898 106–2008	Детали и элементы трубопроводов атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²). Соединения сварные. Типы и размеры
[20] TY 14-1-2143-77	Проволока стальная сварочная марки СВ-03X15H35Г7M6Б (ЭП855)
[21] OCT 5P.9370-81	Электроды покрытые металлические специального назначения для ручной дуговой сварки стали
[22] OCT B5P.9374-81	Электроды покрытые металлические специального назначения для ручной дуговой сварки стали аустенитного класса
[23] OCT 108.948.01-86	Электроды покрытые металлические для ручной дуговой сварки оборудования атомных электростанций. Марки. Технические требования
[24] TY 5.965-11187-81	Электроды марок ЭА 855/51, ЭА 582/23

Приложение A (справочное)

Сведения о нормативно-технической документации на сварочные материалы для сварки изделий из коррозионно-стойкой стали аустенитного класса

А.1 Сведения о нормативно-технической документации на сварочные материалы приведены в таблице А.1.

Таблица А.1

Наименование сварочного материала	Обозначение нормативно- технического документа на материал		
Сварочная проволока			
Св-04Х19Н11М3			
Св-10Х16Н25АМ6	ГОСТ 2246		
Св-07Х25Н13			
Св-03Х15Н35Г7М6Б	ТУ 14-1-2143-77 [20]		
Электроды марок			
ЭА-400/10У, ЭА-400/10Т, ЗИО-8	OCT 5P.9370 [21]		
ЭA-395/9	OCT B5P.9374 [22]		
ЦТ-10, ЦЛ-25/1, ЦЛ-25/2	OCT 108.948.01 [23]		
ЭА-855/51	ТУ 5.965-11187 [24]		

ОКС 23.040.01 ОКП 69 3710 27.120.01 Ключевые слова: сварные соединения, типы, размеры

(Изененная редакция, Изм. № 1)

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	Номера листов			Извещение				
Номер измене- ния	измененных	замененных	НОВЫХ	аннулирован- ных	номер извещения	КОЛ-ВО ЛИСТОВ	подпись	дата
		1.112.113.113.113.113.113.113.113.113.11						
· · · · · · · · · · · · · · · · · · ·								
<u> </u>								
······································								
		- Account of the Control of the Cont						